TY - JOUR
T1 - Whole-genome characterisation of G12P[6] rotavirus strains possessing two distinct genotype constellations co-circulating in Blantyre, Malawi, 2008
AU - Nakagomi, T.
AU - Do, L. P.
AU - Agbemabiese, C. A.
AU - Kaneko, M.
AU - Gauchan, P.
AU - Doan, Y. H.
AU - Jere, K. C.
AU - Steele, A. D.
AU - Iturriza-Gomara, M.
AU - Nakagomi, O.
AU - Cunliffe, N. A.
N1 - Publisher Copyright:
© 2016, Springer-Verlag Wien.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - Rotavirus A strains detected in diarrhoeal children commonly possess any one of the genotypes G1, G2, G3, G4, and G9, with a recent increase in G12 detection globally. G12P[6] strains possessing short RNA (DS-1-like) and long RNA (Wa-like) migration patterns accounted for 27 % of the strains circulating in Blantyre, Malawi, between 2007 and 2008. To understand how the G12P[6] strains with two distinct genetic backgrounds emerged in Malawi, we conducted whole-genome analysis of two long-RNA and two short-RNA strains. While the former had a typical Wa-like genotype constellation of G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1, the latter was found to have G12-P[6]-I2-R2-C2-M1-A2-N2-T2-E2-H2: a VP3 gene mono-reassortant on the DS-1-like backbone. Phylogenetic and Bayesian Markov chain Monte Carlo analyses showed that the short-RNA G12P[6] strains were generated around 2006 by reassortment between an African Wa-like G12P[6] strain donating three genes (the VP7, VP4, and VP3 genes) and a G2P[4] strain similar to the one circulating in Thailand or the United States of America that donated the remaining eight genes. On the other hand, the long-RNA strains were generated as a result of reassortment events within Wa-like G12 and non-G12 strains commonly circulating in Africa; only the VP4 gene was from a Malawian G8P[6] strain. In conclusion, this study uncovered the evolutionary pathways through which two distinct G12P[6] strains emerged in Malawi.
AB - Rotavirus A strains detected in diarrhoeal children commonly possess any one of the genotypes G1, G2, G3, G4, and G9, with a recent increase in G12 detection globally. G12P[6] strains possessing short RNA (DS-1-like) and long RNA (Wa-like) migration patterns accounted for 27 % of the strains circulating in Blantyre, Malawi, between 2007 and 2008. To understand how the G12P[6] strains with two distinct genetic backgrounds emerged in Malawi, we conducted whole-genome analysis of two long-RNA and two short-RNA strains. While the former had a typical Wa-like genotype constellation of G12-P[6]-I1-R1-C1-M1-A1-N1-T1-E1-H1, the latter was found to have G12-P[6]-I2-R2-C2-M1-A2-N2-T2-E2-H2: a VP3 gene mono-reassortant on the DS-1-like backbone. Phylogenetic and Bayesian Markov chain Monte Carlo analyses showed that the short-RNA G12P[6] strains were generated around 2006 by reassortment between an African Wa-like G12P[6] strain donating three genes (the VP7, VP4, and VP3 genes) and a G2P[4] strain similar to the one circulating in Thailand or the United States of America that donated the remaining eight genes. On the other hand, the long-RNA strains were generated as a result of reassortment events within Wa-like G12 and non-G12 strains commonly circulating in Africa; only the VP4 gene was from a Malawian G8P[6] strain. In conclusion, this study uncovered the evolutionary pathways through which two distinct G12P[6] strains emerged in Malawi.
UR - http://www.scopus.com/inward/record.url?scp=84990876781&partnerID=8YFLogxK
U2 - 10.1007/s00705-016-3103-5
DO - 10.1007/s00705-016-3103-5
M3 - Article
C2 - 27718073
AN - SCOPUS:84990876781
SN - 0304-8608
VL - 162
SP - 213
EP - 226
JO - Archives of Virology
JF - Archives of Virology
IS - 1
ER -