TY - JOUR
T1 - The effect of an mHealth clinical decision-making support system on neonatal mortality in a low resource setting
T2 - A cluster-randomized controlled trial
AU - Amoakoh, Hannah Brown
AU - Klipstein-Grobusch, Kerstin
AU - Agyepong, Irene Akua
AU - Zuithoff, Nicolaas P.A.
AU - Amoakoh-Coleman, Mary
AU - Kayode, Gbenga A.
AU - Sarpong, Charity
AU - Reitsma, Johannes B.
AU - Grobbee, Diederick E.
AU - Ansah, Evelyn K.
N1 - Publisher Copyright:
© 2019
PY - 2019/7
Y1 - 2019/7
N2 - Background: MHealth interventions promise to bridge gaps in clinical care but documentation of their effectiveness is limited. We evaluated the utilization and effect of an mhealth clinical decision-making support intervention that aimed to improve neonatal mortality in Ghana by providing access to emergency neonatal protocols for frontline health workers. Methods: In the Eastern Region of Ghana, sixteen districts were randomized into two study arms (8 intervention and 8 control clusters) in a cluster-randomized controlled trial. Institutional neonatal mortality data were extracted from the District Health Information System-2 during an 18-month intervention period. We performed an intention-to-treat analysis and estimated the effect of the intervention on institutional neonatal mortality (primary outcome measure) using grouped binomial logistic regression with a random intercept per cluster. This trial is registered at ClinicalTrials.gov (NCT02468310) and Pan African Clinical Trials Registry (PACTR20151200109073). Findings: There were 65,831 institutional deliveries and 348 institutional neonatal deaths during the study period. Overall, 47 ∙ 3% of deliveries and 56 ∙ 9% of neonatal deaths occurred in the intervention arm. During the intervention period, neonatal deaths increased from 4 ∙ 5 to 6 ∙ 4 deaths and, from 3 ∙ 9 to 4 ∙ 3 deaths per 1000 deliveries in the intervention arm and control arm respectively. The odds of neonatal death was 2⋅09 (95% CI (1 ∙ 00;4 ∙ 38); p = 0 ∙ 051) times higher in the intervention arm compared to the control arm (adjusted odds ratio). The correlation between the number of protocol requests and the number of deliveries per intervention cluster was 0 ∙ 71 (p = 0 ∙ 05). Interpretation: The higher risk of institutional neonatal death observed in intervention clusters may be due to problems with birth and death registration, unmeasured and unadjusted confounding, and unintended use of the intervention. The findings underpin the need for careful and rigorous evaluation of mHealth intervention implementation and effects. Funding: Netherlands Foundation for Scientific Research - WOTRO, Science for Global Development; Utrecht University.
AB - Background: MHealth interventions promise to bridge gaps in clinical care but documentation of their effectiveness is limited. We evaluated the utilization and effect of an mhealth clinical decision-making support intervention that aimed to improve neonatal mortality in Ghana by providing access to emergency neonatal protocols for frontline health workers. Methods: In the Eastern Region of Ghana, sixteen districts were randomized into two study arms (8 intervention and 8 control clusters) in a cluster-randomized controlled trial. Institutional neonatal mortality data were extracted from the District Health Information System-2 during an 18-month intervention period. We performed an intention-to-treat analysis and estimated the effect of the intervention on institutional neonatal mortality (primary outcome measure) using grouped binomial logistic regression with a random intercept per cluster. This trial is registered at ClinicalTrials.gov (NCT02468310) and Pan African Clinical Trials Registry (PACTR20151200109073). Findings: There were 65,831 institutional deliveries and 348 institutional neonatal deaths during the study period. Overall, 47 ∙ 3% of deliveries and 56 ∙ 9% of neonatal deaths occurred in the intervention arm. During the intervention period, neonatal deaths increased from 4 ∙ 5 to 6 ∙ 4 deaths and, from 3 ∙ 9 to 4 ∙ 3 deaths per 1000 deliveries in the intervention arm and control arm respectively. The odds of neonatal death was 2⋅09 (95% CI (1 ∙ 00;4 ∙ 38); p = 0 ∙ 051) times higher in the intervention arm compared to the control arm (adjusted odds ratio). The correlation between the number of protocol requests and the number of deliveries per intervention cluster was 0 ∙ 71 (p = 0 ∙ 05). Interpretation: The higher risk of institutional neonatal death observed in intervention clusters may be due to problems with birth and death registration, unmeasured and unadjusted confounding, and unintended use of the intervention. The findings underpin the need for careful and rigorous evaluation of mHealth intervention implementation and effects. Funding: Netherlands Foundation for Scientific Research - WOTRO, Science for Global Development; Utrecht University.
KW - Ghana
KW - Low and middle income countries
KW - Neonatal mortality
KW - mHealth
UR - http://www.scopus.com/inward/record.url?scp=85067643903&partnerID=8YFLogxK
U2 - 10.1016/j.eclinm.2019.05.010
DO - 10.1016/j.eclinm.2019.05.010
M3 - Article
AN - SCOPUS:85067643903
SN - 2589-5370
VL - 12
SP - 31
EP - 42
JO - eClinicalMedicine
JF - eClinicalMedicine
ER -