TY - JOUR
T1 - Spatial-temporal patterns of ambient fine particulate matter (PM2.5) and black carbon (BC) pollution in Accra
AU - Alli, Abosede S.
AU - Clark, Sierra N.
AU - Hughes, Allison
AU - Nimo, James
AU - Bedford-Moses, Josephine
AU - Baah, Solomon
AU - Wang, Jiayuan
AU - Vallarino, Jose
AU - Agyemang, Ernest
AU - Barratt, Benjamin
AU - Beddows, Andrew
AU - Kelly, Frank
AU - Owusu, George
AU - Baumgartner, Jill
AU - Brauer, Michael
AU - Ezzati, Majid
AU - Agyei-Mensah, Samuel
AU - Arku, Raphael E.
N1 - Publisher Copyright:
© 2021 The Author(s). Published by IOP Publishing Ltd.
PY - 2021/7
Y1 - 2021/7
N2 - Sub-Saharan Africa (SSA) is rapidly urbanizing, and ambient air pollution has emerged as a major environmental health concern in growing cities. Yet, effective air quality management is hindered by limited data. We deployed robust, low-cost and low-power devices in a large-scale measurement campaign and characterized within-city variations in fine particulate matter (PM2.5) and black carbon (BC) pollution in Accra, Ghana. Between April 2019 and June 2020, we measured weekly gravimetric (filter-based) and minute-by-minute PM2.5 concentrations at 146 unique locations, comprising of 10 fixed (∼1 year) and 136 rotating (7 day) sites covering a range of land-use and source influences. Filters were weighed for mass, and light absorbance (10-5m-1) of the filters was used as proxy for BC concentration. Year-long data at four fixed sites that were monitored in a previous study (2006-2007) were compared to assess changes in PM2.5 concentrations. The mean annual PM2.5 across the fixed sites ranged from 26 μg m-3 at a peri-urban site to 43 μg m-3 at a commercial, business, and industrial (CBI) site. CBI areas had the highest PM2.5 levels (mean: 37 μg m-3), followed by high-density residential neighborhoods (mean: 36 μg m-3), while peri-urban areas recorded the lowest (mean: 26 μg m-3). Both PM2.5 and BC levels were highest during the dry dusty Harmattan period (mean PM2.5: 89 μg m-3) compared to non-Harmattan season (mean PM2.5: 23 μg m-3). PM2.5 at all sites peaked at dawn and dusk, coinciding with morning and evening heavy traffic. We found about a 50% reduction (71 vs 37 μg m-3) in mean annual PM2.5 concentrations when compared to measurements in 2006-2007 in Accra. Ambient PM2.5 concentrations in Accra may have plateaued at levels lower than those seen in large Asian megacities. However, levels are still 2- to 4-fold higher than the WHO guideline. Effective and equitable policies are needed to reduce pollution levels and protect public health.
AB - Sub-Saharan Africa (SSA) is rapidly urbanizing, and ambient air pollution has emerged as a major environmental health concern in growing cities. Yet, effective air quality management is hindered by limited data. We deployed robust, low-cost and low-power devices in a large-scale measurement campaign and characterized within-city variations in fine particulate matter (PM2.5) and black carbon (BC) pollution in Accra, Ghana. Between April 2019 and June 2020, we measured weekly gravimetric (filter-based) and minute-by-minute PM2.5 concentrations at 146 unique locations, comprising of 10 fixed (∼1 year) and 136 rotating (7 day) sites covering a range of land-use and source influences. Filters were weighed for mass, and light absorbance (10-5m-1) of the filters was used as proxy for BC concentration. Year-long data at four fixed sites that were monitored in a previous study (2006-2007) were compared to assess changes in PM2.5 concentrations. The mean annual PM2.5 across the fixed sites ranged from 26 μg m-3 at a peri-urban site to 43 μg m-3 at a commercial, business, and industrial (CBI) site. CBI areas had the highest PM2.5 levels (mean: 37 μg m-3), followed by high-density residential neighborhoods (mean: 36 μg m-3), while peri-urban areas recorded the lowest (mean: 26 μg m-3). Both PM2.5 and BC levels were highest during the dry dusty Harmattan period (mean PM2.5: 89 μg m-3) compared to non-Harmattan season (mean PM2.5: 23 μg m-3). PM2.5 at all sites peaked at dawn and dusk, coinciding with morning and evening heavy traffic. We found about a 50% reduction (71 vs 37 μg m-3) in mean annual PM2.5 concentrations when compared to measurements in 2006-2007 in Accra. Ambient PM2.5 concentrations in Accra may have plateaued at levels lower than those seen in large Asian megacities. However, levels are still 2- to 4-fold higher than the WHO guideline. Effective and equitable policies are needed to reduce pollution levels and protect public health.
KW - Ghana
KW - air pollution
KW - air quality
KW - black carbon
KW - fine particulate matter
KW - sub-Saharan Africa
UR - http://www.scopus.com/inward/record.url?scp=85110507317&partnerID=8YFLogxK
U2 - 10.1088/1748-9326/ac074a
DO - 10.1088/1748-9326/ac074a
M3 - Article
AN - SCOPUS:85110507317
SN - 1748-9318
VL - 16
JO - Environmental Research Letters
JF - Environmental Research Letters
IS - 7
M1 - 074013
ER -