TY - JOUR
T1 - Sensitive Detection of Asymptomatic and Symptomatic Malaria with Seven Novel Parasite-Specific LAMP Assays and Translation for Use at Point-of-Care
AU - Malpartida-Cardenas, Kenny
AU - Moser, Nicolas
AU - Ansah, Felix
AU - Pennisi, Ivana
AU - Prah, Diana Ahu
AU - Amoah, Linda Eva
AU - Awandare, Gordon
AU - Hafalla, Julius Clemence R.
AU - Cunnington, Aubrey
AU - Baum, Jake
AU - Rodriguez-Manzano, Jesus
AU - Georgiou, Pantelis
N1 - Publisher Copyright:
Copyright © 2023 Malpartida-Cardenas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
PY - 2023/5
Y1 - 2023/5
N2 - Human malaria is a life-threatening parasitic disease with high impact in the sub-Saharan Africa region, where 95% of global cases occurred in 2021. While most malaria diagnostic tools are focused on Plasmodium falciparum, there is a current lack of testing non-P. falciparum cases, which may be underreported and, if undiagnosed or untreated, may lead to severe consequences. In this work, seven species-specific loop-mediated isothermal amplification (LAMP) assays were designed and evaluated against TaqMan quantitative PCR (qPCR), microscopy, and enzyme-linked immunosorbent assays (ELISAs). Their clinical performance was assessed with a cohort of 164 samples of symptomatic and asymptomatic patients from Ghana. All asymptomatic samples with a parasite load above 80 genomic DNA (gDNA) copies per mL of extracted sample were detected with the Plasmodium falciparum LAMP assay, reporting 95.6% (95% confidence interval [95% CI] of 89.9 to 98.5) sensitivity and 100% (95% CI of 87.2 to 100) specificity. This assay showed higher sensitivity than microscopy and ELISA, which were 52.7% (95% CI of 39.7 to 67%) and 67.3% (95% CI of 53.3 to 79.3%), respectively. Nine samples were positive for P. malariae, indicating coinfections with P. falciparum, which represented 5.5% of the tested population. No samples were detected as positive for P. vivax, P. ovale, P. knowlesi, or P. cynomolgi by any method. Furthermore, translation to the point-of-care was demonstrated with a subcohort of 18 samples tested locally in Ghana using our handheld lab-on-chip platform, Lacewing, showing comparable results to a conventional fluorescence-based instrument. The developed molecular diagnostic test could detect asymptomatic malaria cases, including submicroscopic parasitemia, and it has the potential to be used for point-of-care applications. IMPORTANCE The spread of Plasmodium falciparum parasites with Pfhrp2/3 gene deletions presents a major threat to reliable point-of-care diagnosis with current rapid diagnostic tests (RDTs). Novel molecular diagnostics based on nucleic acid amplification are needed to address this liability. In this work, we overcome this challenge by developing sensitive tools for the detection of Plasmodium falciparum and non-P. falciparum species. Furthermore, we evaluate these tools with a cohort of symptomatic and asymptomatic malaria patients and test a subcohort locally in Ghana. The findings of this work could lead to the implementation of DNA-based diagnostics to fight against the spread of malaria and provide reliable, sensitive, and specific diagnostics at the point of care.
AB - Human malaria is a life-threatening parasitic disease with high impact in the sub-Saharan Africa region, where 95% of global cases occurred in 2021. While most malaria diagnostic tools are focused on Plasmodium falciparum, there is a current lack of testing non-P. falciparum cases, which may be underreported and, if undiagnosed or untreated, may lead to severe consequences. In this work, seven species-specific loop-mediated isothermal amplification (LAMP) assays were designed and evaluated against TaqMan quantitative PCR (qPCR), microscopy, and enzyme-linked immunosorbent assays (ELISAs). Their clinical performance was assessed with a cohort of 164 samples of symptomatic and asymptomatic patients from Ghana. All asymptomatic samples with a parasite load above 80 genomic DNA (gDNA) copies per mL of extracted sample were detected with the Plasmodium falciparum LAMP assay, reporting 95.6% (95% confidence interval [95% CI] of 89.9 to 98.5) sensitivity and 100% (95% CI of 87.2 to 100) specificity. This assay showed higher sensitivity than microscopy and ELISA, which were 52.7% (95% CI of 39.7 to 67%) and 67.3% (95% CI of 53.3 to 79.3%), respectively. Nine samples were positive for P. malariae, indicating coinfections with P. falciparum, which represented 5.5% of the tested population. No samples were detected as positive for P. vivax, P. ovale, P. knowlesi, or P. cynomolgi by any method. Furthermore, translation to the point-of-care was demonstrated with a subcohort of 18 samples tested locally in Ghana using our handheld lab-on-chip platform, Lacewing, showing comparable results to a conventional fluorescence-based instrument. The developed molecular diagnostic test could detect asymptomatic malaria cases, including submicroscopic parasitemia, and it has the potential to be used for point-of-care applications. IMPORTANCE The spread of Plasmodium falciparum parasites with Pfhrp2/3 gene deletions presents a major threat to reliable point-of-care diagnosis with current rapid diagnostic tests (RDTs). Novel molecular diagnostics based on nucleic acid amplification are needed to address this liability. In this work, we overcome this challenge by developing sensitive tools for the detection of Plasmodium falciparum and non-P. falciparum species. Furthermore, we evaluate these tools with a cohort of symptomatic and asymptomatic malaria patients and test a subcohort locally in Ghana. The findings of this work could lead to the implementation of DNA-based diagnostics to fight against the spread of malaria and provide reliable, sensitive, and specific diagnostics at the point of care.
KW - diagnostics
KW - malaria
KW - nucleic acid amplification
KW - point-of-care
UR - http://www.scopus.com/inward/record.url?scp=85163913638&partnerID=8YFLogxK
U2 - 10.1128/spectrum.05222-22
DO - 10.1128/spectrum.05222-22
M3 - Article
C2 - 37158750
AN - SCOPUS:85163913638
SN - 2165-0497
VL - 11
JO - Microbiology spectrum
JF - Microbiology spectrum
IS - 3
ER -