TY - JOUR
T1 - Physico-functional and nutritional characteristics of germinated pigeon pea (Cajanus cajan) flour as a functional food ingredient
AU - Atuna, Richard Atinpoore
AU - Mensah, Mary Ann Sarpong
AU - Koomson, Gifty
AU - Akabanda, Fortune
AU - Dorvlo, Selorm Yaotse
AU - Amagloh, Francis Kweku
N1 - Publisher Copyright:
© 2023, Springer Nature Limited.
PY - 2023/12
Y1 - 2023/12
N2 - The study investigated the effect of germination on pigeon pea flour’s physico-functional (pH, color, water and oil absorption capacities, swelling and foaming capacities and bulk densities) and proximate, total polyphenols and antioxidant activity. The physico-functional and proximate parameters were determined using standard protocols. The color analysis showed that germination significantly increased the flour samples’ lightness (L*) (70.7; p = 0.009) by almost 1.5-fold. Germination resulted in almost 1.1 times higher oil absorption capacity than the control (219.9%; p = 0.022). The foaming capacity of the germinated samples significantly (p = 0.015) increased by 6.4%. Germination significantly reduced the loose bulk density (0.54 vs 0.63; p = 0.012) but significantly increased the tapped bulk density (0.84 vs 0.77; p = 0.002). The germinated samples recorded significantly (1.62%; p = 0.010) lower crude fat, about 1.2 times lower than the raw flour. Germination significantly increased the flour’s total ash (4.2% vs 3.6%; p = 0.003) and crude protein (11.6% vs 9.4%; p = 0.047) content. Germinated pigeon pea flour will perform better in formulating baked products, aerated foods and food extenders than non-germinated pigeon pea flour. Hence, the germination of pigeon peas should be encouraged because it harnesses the functional and proximate attributes measured.
AB - The study investigated the effect of germination on pigeon pea flour’s physico-functional (pH, color, water and oil absorption capacities, swelling and foaming capacities and bulk densities) and proximate, total polyphenols and antioxidant activity. The physico-functional and proximate parameters were determined using standard protocols. The color analysis showed that germination significantly increased the flour samples’ lightness (L*) (70.7; p = 0.009) by almost 1.5-fold. Germination resulted in almost 1.1 times higher oil absorption capacity than the control (219.9%; p = 0.022). The foaming capacity of the germinated samples significantly (p = 0.015) increased by 6.4%. Germination significantly reduced the loose bulk density (0.54 vs 0.63; p = 0.012) but significantly increased the tapped bulk density (0.84 vs 0.77; p = 0.002). The germinated samples recorded significantly (1.62%; p = 0.010) lower crude fat, about 1.2 times lower than the raw flour. Germination significantly increased the flour’s total ash (4.2% vs 3.6%; p = 0.003) and crude protein (11.6% vs 9.4%; p = 0.047) content. Germinated pigeon pea flour will perform better in formulating baked products, aerated foods and food extenders than non-germinated pigeon pea flour. Hence, the germination of pigeon peas should be encouraged because it harnesses the functional and proximate attributes measured.
UR - http://www.scopus.com/inward/record.url?scp=85172997823&partnerID=8YFLogxK
U2 - 10.1038/s41598-023-43607-8
DO - 10.1038/s41598-023-43607-8
M3 - Article
C2 - 37789026
AN - SCOPUS:85172997823
SN - 2045-2322
VL - 13
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 16627
ER -