Abstract
The reactive nature of phosphorus (P) leads to the formation of insoluble Fe, Al and Ca phosphates in highly weathered tropical soils, thus reducing P availability for plant uptake. Biochar with its heterogeneous surface properties as influenced by feedstock and pyrolysis temperature can affect P retention and availability in tropical soils. In the present study, incubation studies were conducted for 90 days to investigate the effect of corn cob and rice husk biochar on P sorption and desorption in two acid (Typic Plinthustult-A & Plinthic Acrudox-B) and one neutral soil (Quartzipsamment-C). The biochars were pyrolyzed at varying temperatures (300 °C, 450 °C and 650 °C) and applied at a rate of 1% (w/w) to the soils. Phosphorus sorption data were fitted to Langmuir and Freundlich models. Phosphorus desorption was done on the residual samples that received initial P concentrations of 21.5 mg L −1 , 43.0 mg L −1 and 86.0 mg L −1 solution using 10 mM KCl. The P sorption capacity of the two acid soils i.e. A (395 mg kg −1 ) and B (296 mg kg −1 ) were more than two fold that of the neutral soil (C) (105 mg kg −1 ). Addition of the biochar types to soil A raised the equilibrium P concentration in solution at decreasing pyrolysis temperature. Similar trend was observed in soil B with the exception of corn cob and rice husk biochar at 650 °C which increased the soil's (B) P sorption capacity. In soil C, both biochar types increased P sorption capacity with increasing pyrolysis temperatures. Phosphorus desorbability increased with increasing initial P concentrations in the three soils. Generally, P desorbability increased in the acid soils but decreased in the neutral soil upon biochar amendment. Decreases in P adsorption and consequently increases in P desorption were more pronounced when the 300 °C biochar types were amended with the soils. The study thus showed that biochar pyrolyzed at 300–450 °C could be used to reduce P sorption and increase P bioavailability especially in acid soils. The addition of biochar to neutral or alkaline soils might increase P retention possibly in the short-term, reducing P bioavailability.
Original language | English |
---|---|
Pages (from-to) | 10-17 |
Number of pages | 8 |
Journal | Geoderma |
Volume | 341 |
DOIs | |
Publication status | Published - 1 May 2019 |
Keywords
- Corn cob biochar
- Desorption
- Phosphorus
- Pyrolysis temperature
- Rice husk biochar
- Sorption