Omega-3 fatty acid and iron supplementation alone, but not in combination, lower inflammation and anemia of infection in mycobacterium tuberculosis-infected mice

Arista Nienaber, Jeannine Baumgartner, Robin C. Dolman, Mumin Ozturk, Lizelle Zandberg, Frank E.A. Hayford, Frank Brombacher, Renee Blaauw, Suraj P. Parihar, Cornelius M. Smuts, Linda Malan

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

Progressive inflammation and anemia are common in tuberculosis (TB) and linked to poor clinical outcomes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have inflammation-resolving properties, whereas iron supplementation in TB may have limited efficacy and enhance bacterial growth. We investigated effects of iron and EPA/DHA supplementation, alone and in combination, on inflammation, anemia, iron status markers and clinical outcomes in Mycobacterium tuberculosis-infected C3HeB/FeJ mice. One week post-infection, mice received the AIN-93 diet without (control) or with supplemental iron (Fe), EPA/DHA, or Fe+EPA/DHA for 3 weeks. Mice supplemented with Fe or EPA/DHA had lower soluble transferrin receptor, ferritin and hepcidin than controls, but these effects were attenuated in Fe+EPA/DHA mice. EPA/DHA increased inflammation-resolving lipid mediators and lowered lung IL-1α, IFN-γ, plasma IL-1β, and TNF-α. Fe lowered lung IL-1α, IL-1β, plasma IL-1β, TNF-α, and IL-6. However, the cytokine-lowering effects in the lungs were attenuated with Fe+EPA/DHA. Mice supplemented with EPA/DHA had lower lung bacterial loads than controls, but this effect was attenuated in Fe+EPA/DHA mice. Thus, individually, post-infection EPA/DHA and iron supplementation lowered systemic and lung inflammation and mitigated anemia of infection in TB, but not when combined. EPA/DHA also enhanced bactericidal effects and could support inflammation resolution and management of anemia.

Original languageEnglish
Article number2897
Pages (from-to)1-22
Number of pages22
JournalNutrients
Volume12
Issue number9
DOIs
Publication statusPublished - Sep 2020

Keywords

  • Anemia of infection
  • Docosahexaenoic acid
  • Eicosapentaenoic acid
  • Inflammation
  • Iron
  • Tuberculosis

Fingerprint

Dive into the research topics of 'Omega-3 fatty acid and iron supplementation alone, but not in combination, lower inflammation and anemia of infection in mycobacterium tuberculosis-infected mice'. Together they form a unique fingerprint.

Cite this