TY - JOUR
T1 - Molecular docking and dynamics simulation studies predict munc18b as a target of mycolactone
T2 - A plausible mechanism for granule exocytosis impairment in Buruli Ulcer Pathogenesis
AU - Kwofie, Samuel K.
AU - Dankwa, Bismark
AU - Enninful, Kweku S.
AU - Adobor, Courage
AU - Broni, Emmanuel
AU - Ntiamoah, Alfred
AU - Wilson, Michael D.
N1 - Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2019/3
Y1 - 2019/3
N2 - Ulcers due to infections with Mycobacterium ulcerans are characterized by complete lack of wound healing processes, painless, an underlying bed of host dead cells and undermined edges due to necrosis. Mycolactone, a macrolide produced by the mycobacterium, is believed to be the toxin responsible. Of interest and relevance is the knowledge that Buruli ulcer (BU) patients remember experiencing trauma previously at the site of the ulcers, suggesting an impairment of wound healing processes, the plausible effect due to the toxin. Wound healing processes involve activation of the blood platelets to release the contents of the dense granules mainly serotonin, calcium ions, and ADP/ATP by exocytosis into the bloodstream. The serotonin release results in attracting more platelets and mast cells to the wound site, with the mast cells also undergoing degranulation, releasing compounds into the bloodstream by exocytosis. Recent work has identified interference in the co-translational translocation of many secreted proteins via the endoplasmic reticulum and cell death involving Wiskott-Aldrich syndrome protein (WASP), Sec61, and angiotensin II receptors (AT2R). We hypothesized that mycolactone by being lipophilic, passively crosses cell membranes and binds to key proteins that are involved in exocytosis by platelets and mast cells, thus inhibiting the initiation of wound healing processes. Based on this, molecular docking studies were performed with mycolactone against key soluble n-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and regulators, namely Vesicle-associated membrane protein (VAMP8), Synaptosomal-associated protein (SNAP23, syntaxin 11, Munc13-4 (its isoform Munc13-1 was used), and Munc18b; and also against known mycolactone targets (Sec61, AT2R, and WASP). Munc18b was shown to be a plausible mycolactone target after the molecular docking studies with binding affinity of −8.5 kcal/mol. Structural studies and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding energy calculations of the mycolactone and Munc18b complex was done with 100 ns molecular dynamics simulations using GROMACS. Mycolactone binds strongly to Munc18b with an average binding energy of −247.571 ± 37.471 kJ/mol, and its presence elicits changes in the structural conformation of the protein. Analysis of the binding interactions also shows that mycolactone interacts with Arg405, which is an important residue of Munc18b, whose mutation could result in impaired granule exocytosis. These findings consolidate the possibility that Munc18b could be a target of mycolactone. The implication of the interaction can be experimentally evaluated to further understand its role in granule exocytosis impairment in Buruli ulcer.
AB - Ulcers due to infections with Mycobacterium ulcerans are characterized by complete lack of wound healing processes, painless, an underlying bed of host dead cells and undermined edges due to necrosis. Mycolactone, a macrolide produced by the mycobacterium, is believed to be the toxin responsible. Of interest and relevance is the knowledge that Buruli ulcer (BU) patients remember experiencing trauma previously at the site of the ulcers, suggesting an impairment of wound healing processes, the plausible effect due to the toxin. Wound healing processes involve activation of the blood platelets to release the contents of the dense granules mainly serotonin, calcium ions, and ADP/ATP by exocytosis into the bloodstream. The serotonin release results in attracting more platelets and mast cells to the wound site, with the mast cells also undergoing degranulation, releasing compounds into the bloodstream by exocytosis. Recent work has identified interference in the co-translational translocation of many secreted proteins via the endoplasmic reticulum and cell death involving Wiskott-Aldrich syndrome protein (WASP), Sec61, and angiotensin II receptors (AT2R). We hypothesized that mycolactone by being lipophilic, passively crosses cell membranes and binds to key proteins that are involved in exocytosis by platelets and mast cells, thus inhibiting the initiation of wound healing processes. Based on this, molecular docking studies were performed with mycolactone against key soluble n-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and regulators, namely Vesicle-associated membrane protein (VAMP8), Synaptosomal-associated protein (SNAP23, syntaxin 11, Munc13-4 (its isoform Munc13-1 was used), and Munc18b; and also against known mycolactone targets (Sec61, AT2R, and WASP). Munc18b was shown to be a plausible mycolactone target after the molecular docking studies with binding affinity of −8.5 kcal/mol. Structural studies and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding energy calculations of the mycolactone and Munc18b complex was done with 100 ns molecular dynamics simulations using GROMACS. Mycolactone binds strongly to Munc18b with an average binding energy of −247.571 ± 37.471 kJ/mol, and its presence elicits changes in the structural conformation of the protein. Analysis of the binding interactions also shows that mycolactone interacts with Arg405, which is an important residue of Munc18b, whose mutation could result in impaired granule exocytosis. These findings consolidate the possibility that Munc18b could be a target of mycolactone. The implication of the interaction can be experimentally evaluated to further understand its role in granule exocytosis impairment in Buruli ulcer.
KW - AT2R
KW - Buruli ulcer
KW - Chaperone proteins
KW - Molecular docking
KW - Molecular dynamics
KW - Munc18b
KW - Mycolactone
KW - SNARE proteins
KW - Sec61
KW - WASP
UR - http://www.scopus.com/inward/record.url?scp=85064217614&partnerID=8YFLogxK
U2 - 10.3390/toxins11030181
DO - 10.3390/toxins11030181
M3 - Article
C2 - 30934618
AN - SCOPUS:85064217614
SN - 2072-6651
VL - 11
JO - Toxins
JF - Toxins
IS - 3
M1 - 181
ER -