Maximal function and carleson measures in the theory of Békollé–Bonami weights

Carnot D. Kenfack, Benôit F. Sehba

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Let ω be a Békollé–Bonami weight. We give a complete characterization of the positive measures µ such that (Equation presented) where Mω is the weighted Hardy–Littlewood maximal function on the upper half-plane H and 1 ≤ p, q < ∞.

Original languageEnglish
Pages (from-to)211-226
Number of pages16
JournalColloquium Mathematicum
Volume142
Issue number2
DOIs
Publication statusPublished - 2016

Keywords

  • Békollé–Bonami weight
  • Carleson-type embedding
  • Dyadic grid
  • Maximal function
  • Upper half-plane

Fingerprint

Dive into the research topics of 'Maximal function and carleson measures in the theory of Békollé–Bonami weights'. Together they form a unique fingerprint.

Cite this