TY - JOUR
T1 - Markov Chain Modeling of HIV, Tuberculosis, and Hepatitis B Transmission in Ghana
AU - Twumasi, Clement
AU - Asiedu, Louis
AU - Nortey, Ezekiel N.N.
N1 - Publisher Copyright:
© 2019 Clement Twumasi et al.
PY - 2019
Y1 - 2019
N2 - Several mathematical and standard epidemiological models have been proposed in studying infectious disease dynamics. These models help to understand the spread of disease infections. However, most of these models are not able to estimate other relevant disease metrics such as probability of first infection and recovery as well as the expected time to infection and recovery for both susceptible and infected individuals. That is, most of the standard epidemiological models used in estimating transition probabilities (TPs) are not able to generalize the transition estimates of disease outcomes at discrete time steps for future predictions. This paper seeks to address the aforementioned problems through a discrete-time Markov chain model. Secondary datasets from cohort studies were collected on HIV, tuberculosis (TB), and hepatitis B (HB) cases from a regional hospital in Ghana. The Markov chain model revealed that hepatitis B was more infectious over time than tuberculosis and HIV even though the probability of first infection of these diseases was relatively low within the study population. However, individuals infected with HIV had comparatively lower life expectancies than those infected with tuberculosis and hepatitis B. Discrete-time Markov chain technique is recommended as viable for modeling disease dynamics in Ghana.
AB - Several mathematical and standard epidemiological models have been proposed in studying infectious disease dynamics. These models help to understand the spread of disease infections. However, most of these models are not able to estimate other relevant disease metrics such as probability of first infection and recovery as well as the expected time to infection and recovery for both susceptible and infected individuals. That is, most of the standard epidemiological models used in estimating transition probabilities (TPs) are not able to generalize the transition estimates of disease outcomes at discrete time steps for future predictions. This paper seeks to address the aforementioned problems through a discrete-time Markov chain model. Secondary datasets from cohort studies were collected on HIV, tuberculosis (TB), and hepatitis B (HB) cases from a regional hospital in Ghana. The Markov chain model revealed that hepatitis B was more infectious over time than tuberculosis and HIV even though the probability of first infection of these diseases was relatively low within the study population. However, individuals infected with HIV had comparatively lower life expectancies than those infected with tuberculosis and hepatitis B. Discrete-time Markov chain technique is recommended as viable for modeling disease dynamics in Ghana.
UR - http://www.scopus.com/inward/record.url?scp=85076353380&partnerID=8YFLogxK
U2 - 10.1155/2019/9362492
DO - 10.1155/2019/9362492
M3 - Article
AN - SCOPUS:85076353380
SN - 1687-708X
VL - 2019
JO - Interdisciplinary Perspectives on Infectious Diseases
JF - Interdisciplinary Perspectives on Infectious Diseases
M1 - 9362492
ER -