Abstract
The present study reports the economic and sustainable syntheses of functional porous carbons for supercapacitor and CO2 capture applications. Lignin, a byproduct of pulp and paper industry, was successfully converted into a series of heteroatom-doped porous carbons (LHPCs) through a hydrothermal carbonization followed by a chemical activating treatment. The prepared carbons include in the range of 2.5 to 5.6 wt% nitrogen and 54 wt% oxygen in its structure. All the prepared carbons exhibit micro- and mesoporous structures with a high surface area in the range of 1788 to 2957 m2 g−1. As-prepared LHPCs as an active electrode material and CO2 adsorbents were investigated for supercapacitor and CO2 capture applications. Lignin-derived heteroatom-doped porous carbon 850 shows an outstanding gravimetric specific capacitance of 372 F g−1 and excellent cyclic stability over 30,000 cycles in 1 M KOH. Lignin-derived heteroatom-doped porous carbon 700 displays a remarkable CO2 capture capacity of up to 4.8 mmol g−1 (1 bar and 298 K). This study illustrates the effective transformation of a sustainable waste product into a highly functional carbon material for energy storage and CO2 separation applications.
Original language | English |
---|---|
Pages (from-to) | 2686-2700 |
Number of pages | 15 |
Journal | International Journal of Energy Research |
Volume | 42 |
Issue number | 8 |
DOIs | |
Publication status | Published - 25 Jun 2018 |
Keywords
- CO separation
- biomass
- chemical activation
- heteroatom-doped carbon
- hydrothermal carbonization
- lignin
- supercapacitor