Kinome-Focused CRISPR-Cas9 Screens in African Ancestry Patient-Derived Breast Cancer Organoids Identify Essential Kinases and Synergy of EGFR and FGFR1 Inhibition

Florencia P. Madorsky Rowdo, Rachel Martini, Sarah E. Ackermann, Colin P. Tang, Marvel Tranquille, Adriana Irizarry, Ilkay Us, Omar Alawa, Jenna E. Moyer, Michael Sigouros, John Nguyen, Majd Al Assaad, Esther Cheng, Paula S. Ginter, Jyothi Manohar, Brian Stonaker, Richard Boateng, Joseph K. Oppong, Ernest K. Adjei, Baffour AwuahIshmael Kyei, Francis S. Aitpillah, Michael O. Adinku, Kwasi Ankomah, Ernest B. Osei-Bonsu, Kofi K. Gyan, Syed Hoda, Lisa Newman, Juan Miguel Mosquera, Andrea Sboner, Olivier Elemento, Lukas E. Dow, Melissa B. Davis, M. Laura Martin

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Precision medicine approaches to cancer treatment aim to exploit genomic alterations that are specific to individual patients to tailor therapeutic strategies. Yet, some targetable genes and pathways are essential for tumor cell viability even in the absence of direct genomic alterations. In underrepresented populations, the mutational landscape and determinants of response to existing therapies are poorly characterized because of limited inclusion in clinical trials and studies. One way to reveal tumor essential genes is with genetic screens. Most screens are conducted on cell lines that bear little resemblance to patient tumors, after years of culture under nonphysiologic conditions. To address this problem, we aimed to develop a CRISPR screening pipeline in three-dimensionally grown patient-derived tumor organoid (PDTO) models. A breast cancer PDTO biobank that focused on underrepresented populations, including West African patients, was established and used to conduct a negative-selection kinome-focused CRISPR screen to identify kinases essential for organoid growth and potential targets for combination therapy with EGFR or MEK inhibitors. The screen identified several previously unidentified kinase targets, and the combination of FGFR1 and EGFR inhibitors synergized to block organoid proliferation. Together, these data demonstrate the feasibility of CRISPR-based genetic screens in patient-derived tumor models, including PDTOs from underrepresented patients with cancer, and identify targets for cancer therapy.

Original languageEnglish
Pages (from-to)551-566
Number of pages16
JournalCancer Research
Volume85
Issue number3
DOIs
Publication statusPublished - 1 Feb 2025
Externally publishedYes

Fingerprint

Dive into the research topics of 'Kinome-Focused CRISPR-Cas9 Screens in African Ancestry Patient-Derived Breast Cancer Organoids Identify Essential Kinases and Synergy of EGFR and FGFR1 Inhibition'. Together they form a unique fingerprint.

Cite this