TY - JOUR
T1 - Genotypic and phenotypic diversity of Mycobacterium tuberculosis complex genotypes prevalent in West Africa
AU - Osei-Wusu, Stephen
AU - Otchere, Isaac Darko
AU - Morgan, Portia
AU - Musah, Abdul Basit
AU - Siam, Ishaque Mintah
AU - Asandem, Diana
AU - Afum, Theophilus
AU - Asare, Prince
AU - Asante-Poku, Adwoa
AU - Asamoah Kusi, Kwadwo
AU - Gagneux, Sebastien
AU - Yeboah-Manu, Dorothy
N1 - Publisher Copyright:
© 2021 Osei-Wusu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/8
Y1 - 2021/8
N2 - Findings from previous comparative genomics studies of the Mycobacterium tuberculosis complex (MTBC) suggest genomic variation among the genotypes may have phenotypic implications. We investigated the diversity in the phenotypic profiles of the main prevalent MTBC genotypes in West Africa. Thirty-six whole genome sequenced drug susceptible MTBC isolates belonging to lineages 4, 5 and 6 were included in this study. The isolates were phenotypically characterized for urease activity, tween hydrolysis, Thiophen-2- Carboxylic Acid Hydrazide (TCH) susceptibility, nitric oxide production, and growth rate in both liquid (7H9) and solid media (7H11 and Löwenstein-Jensen (L-J)). Lineage 4 isolates showed the highest growth rate in both liquid (p = 0.0003) and on solid (L-J) media supplemented with glycerol (p<0.001) or pyruvate (p = 0.005). L6 isolates optimally utilized pyruvate compared to glycerol (p<0.001), whereas L5 isolates grew similarly on both media (p = 0.05). Lineage 4 isolates showed the lowest average time to positivity (TTP) (p = 0.01; Average TTP: L4 = 15days, L5 = 16.7days, L6 = 29.7days) and the highest logCFU/mL (p = 0.04; average logCFU/mL L4 = 5.9, L5 = 5.0, L6 = 4.4) on 7H11 supplemented with glycerol, but there was no significant difference in growth on 7H11 supplemented with pyruvate (p = 0.23). The highest release of nitrite was recorded for L5 isolates, followed by L4 and L6 isolates. However, the reverse was observed in the urease activity for the lineages. All isolates tested were resistant to TCH except for one L6 isolate. Comparative genomic analyses revealed several mutations that might explain the diverse phenotypic profiles of these isolates. Our findings showed significant phenotypic diversity among the MTBC lineages used for this study.
AB - Findings from previous comparative genomics studies of the Mycobacterium tuberculosis complex (MTBC) suggest genomic variation among the genotypes may have phenotypic implications. We investigated the diversity in the phenotypic profiles of the main prevalent MTBC genotypes in West Africa. Thirty-six whole genome sequenced drug susceptible MTBC isolates belonging to lineages 4, 5 and 6 were included in this study. The isolates were phenotypically characterized for urease activity, tween hydrolysis, Thiophen-2- Carboxylic Acid Hydrazide (TCH) susceptibility, nitric oxide production, and growth rate in both liquid (7H9) and solid media (7H11 and Löwenstein-Jensen (L-J)). Lineage 4 isolates showed the highest growth rate in both liquid (p = 0.0003) and on solid (L-J) media supplemented with glycerol (p<0.001) or pyruvate (p = 0.005). L6 isolates optimally utilized pyruvate compared to glycerol (p<0.001), whereas L5 isolates grew similarly on both media (p = 0.05). Lineage 4 isolates showed the lowest average time to positivity (TTP) (p = 0.01; Average TTP: L4 = 15days, L5 = 16.7days, L6 = 29.7days) and the highest logCFU/mL (p = 0.04; average logCFU/mL L4 = 5.9, L5 = 5.0, L6 = 4.4) on 7H11 supplemented with glycerol, but there was no significant difference in growth on 7H11 supplemented with pyruvate (p = 0.23). The highest release of nitrite was recorded for L5 isolates, followed by L4 and L6 isolates. However, the reverse was observed in the urease activity for the lineages. All isolates tested were resistant to TCH except for one L6 isolate. Comparative genomic analyses revealed several mutations that might explain the diverse phenotypic profiles of these isolates. Our findings showed significant phenotypic diversity among the MTBC lineages used for this study.
UR - http://www.scopus.com/inward/record.url?scp=85113725152&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0255433
DO - 10.1371/journal.pone.0255433
M3 - Article
C2 - 34437584
AN - SCOPUS:85113725152
SN - 1932-6203
VL - 16
JO - PLoS ONE
JF - PLoS ONE
IS - 8 August
M1 - e0255433
ER -