TY - JOUR
T1 - Field evaluation of specificity and sensitivity of a standard SARS-CoV-2 antigen rapid diagnostic test
T2 - A prospective study at a teaching hospital in Northern Ghana
AU - Abdul-Mumin, Alhassan
AU - Abubakari, Abdulai
AU - Agbozo, Faith
AU - Abdul-Karim, Abass
AU - Nuertey, Benjamin Demah
AU - Mumuni, Kareem
AU - Heuschen, Anna Katharina
AU - Hennig, Lisa
AU - Denkinger, Claudia M.
AU - Müller, Olaf
AU - Jahn, Albrecht
N1 - Publisher Copyright:
Copyright: © 2021 Abdul-Mumin et al.
PY - 2021/12
Y1 - 2021/12
N2 - The testing capacity for SARS-CoV-2 in Africa is rather limited. Antigen detection rapid diagnostic tests (Ag-RDTs) are a cheap and rapid alternative to reverse transcriptase-polymerase chain reaction (RT-PCR) tests, but there is little data about their performance under real life conditions in tropical countries. The objective of this study is to evaluate the performance of a standard Ag-RDT in a population of a major hospital in northern Ghana. Prospective, cross-sectional, blinded verification of the performance of the SD Biosensor Standard Q SARS-CoV-2 Ag-RDT under real life conditions in 135 symptomatic patients and 58 contacts of RT-PCR positives at Tamale Teaching Hospital in February 2021. Nasopharyngeal samples were taken under standard conditions and tested against RT-PCR in the hospital laboratory. 193 participants (median age 35 years, 109 male) were included into the study for which both RT-PCR test and Ag-RDT results were available. A total of 42 (22%) were RT-PCR positive. Of the 42 RT-PCR positives, 27 were Ag-RDT positive, resulting in a sensitivity of 64% (95% CI 49–79). Sensitivity among symptomatic patients was 58% (95% CI 38–78). 123 were identified Ag-RDT negatives of the 151 RT-PCR negatives, resulting in a specificity of 81% (95% CI 75–87). SARS-CoV-2 Ag-RDTs appear to have a rather low sensitivity and particularly a low specificity under real life conditions in Africa. The role of existing Ag-RDTs in countries with high-temperature climates and limited resources still needs more data and discussion.
AB - The testing capacity for SARS-CoV-2 in Africa is rather limited. Antigen detection rapid diagnostic tests (Ag-RDTs) are a cheap and rapid alternative to reverse transcriptase-polymerase chain reaction (RT-PCR) tests, but there is little data about their performance under real life conditions in tropical countries. The objective of this study is to evaluate the performance of a standard Ag-RDT in a population of a major hospital in northern Ghana. Prospective, cross-sectional, blinded verification of the performance of the SD Biosensor Standard Q SARS-CoV-2 Ag-RDT under real life conditions in 135 symptomatic patients and 58 contacts of RT-PCR positives at Tamale Teaching Hospital in February 2021. Nasopharyngeal samples were taken under standard conditions and tested against RT-PCR in the hospital laboratory. 193 participants (median age 35 years, 109 male) were included into the study for which both RT-PCR test and Ag-RDT results were available. A total of 42 (22%) were RT-PCR positive. Of the 42 RT-PCR positives, 27 were Ag-RDT positive, resulting in a sensitivity of 64% (95% CI 49–79). Sensitivity among symptomatic patients was 58% (95% CI 38–78). 123 were identified Ag-RDT negatives of the 151 RT-PCR negatives, resulting in a specificity of 81% (95% CI 75–87). SARS-CoV-2 Ag-RDTs appear to have a rather low sensitivity and particularly a low specificity under real life conditions in Africa. The role of existing Ag-RDTs in countries with high-temperature climates and limited resources still needs more data and discussion.
UR - http://www.scopus.com/inward/record.url?scp=85129692039&partnerID=8YFLogxK
U2 - 10.1371/journal.pgph.0000040
DO - 10.1371/journal.pgph.0000040
M3 - Article
AN - SCOPUS:85129692039
SN - 2767-3375
VL - 1
JO - PLOS Global Public Health
JF - PLOS Global Public Health
IS - 12
M1 - e0000040
ER -