Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen

Thomas M. Gilbreath, Eliningaya J. Kweka, Yaw A. Afrane, Andrew K. Githeko, Guiyun Yan

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Background: In sub-Saharan Africa, malaria, transmitted by the Anopheles mosquito, remains one of the foremost public health concerns. Anopheles gambiae, the primary malaria vector in sub-Saharan Africa, is typically associated with ephemeral, sunlit habitats; however, An. gambiae larvae often share these habitats with other anophelines along with other disease-transmitting and benign mosquito species. Resource limitations within habitats can constrain larval density and development, and this drives competitive interactions among and between species. Methods. We used naturally occurring stable isotope ratios of carbon and nitrogen to identify resource partitioning among co-occurring larval species in microcosms and natural habitats in western Kenya. We used two and three source mixing models to estimate resource utilization (i.e. bacteria, algae, organic matter) by larvae. Results: Laboratory experiments revealed larval δ§ssup§13§esup§C and δ§ssup§ 15§esup§N composition to reflect the food sources they were reared on. Resource partitioning was demonstrated between An. gambiae and Culex quinquefasciatus larvae sharing the same microcosms. Differences in larval δ§ssup§13§esup§C and δ§ssup§15§ esup§N content was also evident in natural habitats, and Anopheles species were consistently more enriched in δ§ssup§13§esup§C when compared to culicine larvae. Conclusions: These observations demonstrate inter-specific resource partitioning between Cx. quinquefasciatus and An. gambiae larvae in natural habitats in western Kenya. This information may be translated into opportunities for targeted larval control efforts by limiting specific larval food resources, or through bio-control utilizing competitors at the same trophic level.

Original languageEnglish
Article number353
JournalParasites and Vectors
Volume6
Issue number1
DOIs
Publication statusPublished - 12 Dec 2013
Externally publishedYes

Keywords

  • An. gambiae
  • Resource partitioning
  • Stable isotopes
  • Trophic preferences
  • δ§ssup§ 13§esup§C
  • δ§ssup§15§esup§N

Fingerprint

Dive into the research topics of 'Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen'. Together they form a unique fingerprint.

Cite this