TY - JOUR
T1 - Comparison of Anatomical and Indication-Based Diagnostic Reference Levels (DRLs) in Head CT Imaging
T2 - Implications for Radiation Dose Management
AU - Ohene-Botwe, Benard
AU - Anim-Sampong, Samuel
AU - Saizi, Robert
N1 - Publisher Copyright:
Copyright © 2025 Benard Ohene-Botwe et al. International Journal of Biomedical Imaging published by John Wiley & Sons Ltd.
PY - 2025
Y1 - 2025
N2 - Introduction: Many diagnostic reference levels (DRLs) in computed tomography (CT) imaging are based mainly on anatomical locations and often overlook variations in radiation exposure due to different clinical indications. While indication-based DRLs, derived from dose descriptors like volume-weighted CT dose index (CTDIvol) and dose length product (DLP), are recommended for optimising patient radiation exposure, many studies still use anatomical-based DRL values. This study is aimed at quantifying the differences between anatomical and indication-based DRL values in head CT imaging and assessing its implications for radiation dose management. This will support the narrative when explaining the distinction between indication-based DRLs and anatomical DRLs for patients’ dose management. Methods: Employing a retrospective quantitative study design, we developed and compared anatomical and common indication-based DRL values using a dataset of head CT scans with similar characteristics. The indications included in the study were brain tumor/intracranial space-occupying lesion (ISOL), head injury/trauma, stroke, and anatomical examinations. Data analysis was conducted using SPSS Version 29. Results: The findings suggest that using anatomical-based DLP DRL values for CT head examinations leads to underestimations in the median, 25th percentile, and 75th percentile values of head injury/trauma by 20.2%, 30.0%, and 14.5% in single-phase CT head procedures. Conversely, for the entire examination, using anatomical-based DLP DRL as a benchmark for CT stroke DRL overestimates median, 25th percentile, and 75th percentile values by 18.3%, 23.9%, and 13.5%. Brain tumor/ISOL DLP values are underestimated by 62.6%, 60.4%, and 71.8%, respectively. Conclusion:The study highlights that using anatomical DLP DRL values for specific indications in head CT scans can lead to underestimated or overestimated DLP values, making them less reliable for radiation management compared to indication-based DRLs. Therefore, it is imperative to promote the establishment and use of indication-based DRLs for more accurate dose management in CT imaging.
AB - Introduction: Many diagnostic reference levels (DRLs) in computed tomography (CT) imaging are based mainly on anatomical locations and often overlook variations in radiation exposure due to different clinical indications. While indication-based DRLs, derived from dose descriptors like volume-weighted CT dose index (CTDIvol) and dose length product (DLP), are recommended for optimising patient radiation exposure, many studies still use anatomical-based DRL values. This study is aimed at quantifying the differences between anatomical and indication-based DRL values in head CT imaging and assessing its implications for radiation dose management. This will support the narrative when explaining the distinction between indication-based DRLs and anatomical DRLs for patients’ dose management. Methods: Employing a retrospective quantitative study design, we developed and compared anatomical and common indication-based DRL values using a dataset of head CT scans with similar characteristics. The indications included in the study were brain tumor/intracranial space-occupying lesion (ISOL), head injury/trauma, stroke, and anatomical examinations. Data analysis was conducted using SPSS Version 29. Results: The findings suggest that using anatomical-based DLP DRL values for CT head examinations leads to underestimations in the median, 25th percentile, and 75th percentile values of head injury/trauma by 20.2%, 30.0%, and 14.5% in single-phase CT head procedures. Conversely, for the entire examination, using anatomical-based DLP DRL as a benchmark for CT stroke DRL overestimates median, 25th percentile, and 75th percentile values by 18.3%, 23.9%, and 13.5%. Brain tumor/ISOL DLP values are underestimated by 62.6%, 60.4%, and 71.8%, respectively. Conclusion:The study highlights that using anatomical DLP DRL values for specific indications in head CT scans can lead to underestimated or overestimated DLP values, making them less reliable for radiation management compared to indication-based DRLs. Therefore, it is imperative to promote the establishment and use of indication-based DRLs for more accurate dose management in CT imaging.
KW - anatomical
KW - computed tomography
KW - diagnostic reference levels
KW - differences
KW - indication based
UR - http://www.scopus.com/inward/record.url?scp=105002157086&partnerID=8YFLogxK
U2 - 10.1155/ijbi/6464273
DO - 10.1155/ijbi/6464273
M3 - Article
AN - SCOPUS:105002157086
SN - 1687-4188
VL - 2025
JO - International Journal of Biomedical Imaging
JF - International Journal of Biomedical Imaging
IS - 1
M1 - 6464273
ER -