TY - JOUR
T1 - Comparative Study of Phosgene Gas Sensing Using Carbon and Boron Nitride Nanomaterials-A DFT Approach
AU - Kweitsu, Emmanuel Obroni
AU - Armoo, Stephen Kanga
AU - Kan-Dapaah, Kwabena
AU - Abavare, Eric Kwabena Kyeh
AU - Dodoo-Arhin, David
AU - Yaya, Abu
PY - 2020/12/29
Y1 - 2020/12/29
N2 - Phosgene (COCl2), a valuable industrial compound, maybe a public safety and health risk due to potential abuse and possible accidental spillage. Conventional techniques suffer from issues related to procedural complexity and sensitivity. Therefore, there is a need for the development of simple and highly sensitive techniques that overcome these challenges. Recent advances in nanomaterials science offer the opportunity for the development of such techniques by exploiting the unique properties of these nanostructures. In this study, we investigated the potential of six types of nanomaterials: three carbon-based ([5,0] CNT, C60, C70) and three boron nitride-based (BNNT, BN60, BN70) for the detection of COCl2. The local density approximation (LDA) approach of the density functional theory (DFT) was used to estimate the adsorption characteristics and conductivities of these materials. The results show that the COCl2 molecule adsorbed spontaneously on the Fullerene or nanocages and endothermically on the pristine zigzag nanotubes. Using the magnitude of the bandgap modulation, the order of suitability of the different nanomaterials was established as follows: PBN60 (0.19%) < PC70 (1.39%) < PC60 (1.77%) < PBNNT (27.64%) < PCNT (65.29%) < PBN70 (134.12%). Since the desired criterion for the design of an electronic device is increased conductivity after adsorption due to the resulting low power consumption, PC60 was found to be most suitable because of its power consumption as it had the largest decrease of 1.77% of the bandgap.
AB - Phosgene (COCl2), a valuable industrial compound, maybe a public safety and health risk due to potential abuse and possible accidental spillage. Conventional techniques suffer from issues related to procedural complexity and sensitivity. Therefore, there is a need for the development of simple and highly sensitive techniques that overcome these challenges. Recent advances in nanomaterials science offer the opportunity for the development of such techniques by exploiting the unique properties of these nanostructures. In this study, we investigated the potential of six types of nanomaterials: three carbon-based ([5,0] CNT, C60, C70) and three boron nitride-based (BNNT, BN60, BN70) for the detection of COCl2. The local density approximation (LDA) approach of the density functional theory (DFT) was used to estimate the adsorption characteristics and conductivities of these materials. The results show that the COCl2 molecule adsorbed spontaneously on the Fullerene or nanocages and endothermically on the pristine zigzag nanotubes. Using the magnitude of the bandgap modulation, the order of suitability of the different nanomaterials was established as follows: PBN60 (0.19%) < PC70 (1.39%) < PC60 (1.77%) < PBNNT (27.64%) < PCNT (65.29%) < PBN70 (134.12%). Since the desired criterion for the design of an electronic device is increased conductivity after adsorption due to the resulting low power consumption, PC60 was found to be most suitable because of its power consumption as it had the largest decrease of 1.77% of the bandgap.
KW - DFT
KW - LDA
KW - boron nitride
KW - carbon nanotube
KW - phosgene
UR - http://www.scopus.com/inward/record.url?scp=85099176783&partnerID=8YFLogxK
U2 - 10.3390/molecules26010120
DO - 10.3390/molecules26010120
M3 - Article
C2 - 33383916
AN - SCOPUS:85099176783
SN - 1420-3049
VL - 26
JO - Molecules
JF - Molecules
IS - 1
ER -