TY - JOUR
T1 - An extract of Synedrella nodiflora (L) Gaertn exhibits antidepressant properties through monoaminergic mechanisms
AU - Amoateng, Patrick
AU - Kukuia, Kennedy Kwami Edem
AU - Mensah, Jeffrey Amoako
AU - Osei-Safo, Dorcas
AU - Adjei, Samuel
AU - Eklemet, Audrey Akyea
AU - Vinyo, Emmanuel Atsu
AU - Karikari, Thomas K.
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2018/8/1
Y1 - 2018/8/1
N2 - Synedrella nodiflora (SNE) has been used traditionally for many neurological conditions and some of these neuroactive effects have been scientifically substantiated. The usefulness of SNE in depression has however not been investigated despite the availability of data in other disease models indicating it may be useful. The present study therefore examined the effect of SNE in acute murine models of depression and the possible mechanisms mediating its activities in these models. Preliminary qualitative phytochemical and high performance liquid chromatography (HPLC) screening were conducted on SNE. The behavioural effects of SNE (100, 300 and 1000 mg/kg) pre-treated mice were examined in the forced swimming (FST) and tail suspension (TST) tests. Behavioural events such as mobility (swimming, climbing, curling and climbing), and immobility, were scored. The possible involvement of monoamines in the effects of SNE was assessed in the TST by pre-treating mice with α-methyldopa, reserpine and para-chlorophenylalanine (pCPA) in separate experiments. Flavonoids, tannins, saponins, alkaloids, cardiac glycosides, coumarins, triterpenes, sterols, anthraquinones and phenolic compounds were present in SNE. HPLC analysis revealed the presence of two major constituents observed at retention times 42.56 and 46.51 min, with percentage composition of 45.72% and 36.88% respectively. SNE significantly reduced immobility scores in both FST and TST, suggesting antidepressant effects. The antidepressant properties of SNE were reversed by the pre-treatment of α-methyldopa, reserpine and pCPA, suggesting a possible involvement of monoamines (noradrenaline and serotonin) in its mechanism(s) of actions. SNE exhibits antidepressant effects, possibly mediated through an interplay of enhancement of noradrenergic and serotoninergic mechanisms.
AB - Synedrella nodiflora (SNE) has been used traditionally for many neurological conditions and some of these neuroactive effects have been scientifically substantiated. The usefulness of SNE in depression has however not been investigated despite the availability of data in other disease models indicating it may be useful. The present study therefore examined the effect of SNE in acute murine models of depression and the possible mechanisms mediating its activities in these models. Preliminary qualitative phytochemical and high performance liquid chromatography (HPLC) screening were conducted on SNE. The behavioural effects of SNE (100, 300 and 1000 mg/kg) pre-treated mice were examined in the forced swimming (FST) and tail suspension (TST) tests. Behavioural events such as mobility (swimming, climbing, curling and climbing), and immobility, were scored. The possible involvement of monoamines in the effects of SNE was assessed in the TST by pre-treating mice with α-methyldopa, reserpine and para-chlorophenylalanine (pCPA) in separate experiments. Flavonoids, tannins, saponins, alkaloids, cardiac glycosides, coumarins, triterpenes, sterols, anthraquinones and phenolic compounds were present in SNE. HPLC analysis revealed the presence of two major constituents observed at retention times 42.56 and 46.51 min, with percentage composition of 45.72% and 36.88% respectively. SNE significantly reduced immobility scores in both FST and TST, suggesting antidepressant effects. The antidepressant properties of SNE were reversed by the pre-treatment of α-methyldopa, reserpine and pCPA, suggesting a possible involvement of monoamines (noradrenaline and serotonin) in its mechanism(s) of actions. SNE exhibits antidepressant effects, possibly mediated through an interplay of enhancement of noradrenergic and serotoninergic mechanisms.
KW - Antidepressant
KW - Forced swimming
KW - Monoamines
KW - Synedrella nodiflora
KW - Tail suspension
UR - http://www.scopus.com/inward/record.url?scp=85046725205&partnerID=8YFLogxK
U2 - 10.1007/s11011-018-0244-0
DO - 10.1007/s11011-018-0244-0
M3 - Article
C2 - 29754167
AN - SCOPUS:85046725205
SN - 0885-7490
VL - 33
SP - 1359
EP - 1368
JO - Metabolic Brain Disease
JF - Metabolic Brain Disease
IS - 4
ER -