TY - JOUR
T1 - Adventitious root formation in stem cuttings of Quercus bicolor and Quercus macrocarpa and its relationship to stem anatomy
AU - Amissah, J. Naalamle
AU - Paolillo, Dominick J.
AU - Bassuk, Nina
PY - 2008/7
Y1 - 2008/7
N2 - This study investigated the relationship of stem anatomy to differences in rooting ability between Quercus bicolor Wild. and Quercus macrocarpa Michx. cuttings. Quercus bicolor cuttings were found to have a significantly greater proportion of parenchymatous gaps in the sclerenchyma sheath over a 9-week period compared with Q. macrocarpa cuttings. In Q. macrocarpa, the percentage gap was generally low, coinciding with the low percentage rooting observed in this species. Percentage rooting correlated well (r2 = 0.75) with the percentage parenchymatous gap in the perivascular region of Q. bicolor cuttings. The problems with accepting this relationship as causal are stated in the discussion. Untreated cuttings showed normal stem organization: a dermal tissue system that included the initial stages of phellem formation, a cortex, and a ring of closely arranged vascular bundles in early stages of secondary growth. The locations of the five distinct lobes of the pith were coordinated with the locations of root primordia. Callus growth was first detected in the cortex (i.e., external to the fiber bundles), followed by proliferation within the phloem, opposite the lobes of the pith, 8 to 12 days after cuttings were treated with indole butyric acid (6000 mg·L-1 dissolved in 50% v/v ethanol in water). By 14 to 16 days, root primordia had developed within the proliferative tissue in the secondary phloem. In both species, root primordia penetrated parenchymatous gaps in the fiber sheath directly, the fiber bundles being displaced laterally as the roots increased in size.
AB - This study investigated the relationship of stem anatomy to differences in rooting ability between Quercus bicolor Wild. and Quercus macrocarpa Michx. cuttings. Quercus bicolor cuttings were found to have a significantly greater proportion of parenchymatous gaps in the sclerenchyma sheath over a 9-week period compared with Q. macrocarpa cuttings. In Q. macrocarpa, the percentage gap was generally low, coinciding with the low percentage rooting observed in this species. Percentage rooting correlated well (r2 = 0.75) with the percentage parenchymatous gap in the perivascular region of Q. bicolor cuttings. The problems with accepting this relationship as causal are stated in the discussion. Untreated cuttings showed normal stem organization: a dermal tissue system that included the initial stages of phellem formation, a cortex, and a ring of closely arranged vascular bundles in early stages of secondary growth. The locations of the five distinct lobes of the pith were coordinated with the locations of root primordia. Callus growth was first detected in the cortex (i.e., external to the fiber bundles), followed by proliferation within the phloem, opposite the lobes of the pith, 8 to 12 days after cuttings were treated with indole butyric acid (6000 mg·L-1 dissolved in 50% v/v ethanol in water). By 14 to 16 days, root primordia had developed within the proliferative tissue in the secondary phloem. In both species, root primordia penetrated parenchymatous gaps in the fiber sheath directly, the fiber bundles being displaced laterally as the roots increased in size.
KW - Oaks
KW - Parenchyma gaps
KW - Propagation
KW - Rooting
KW - Sclerenchyma
UR - http://www.scopus.com/inward/record.url?scp=47749085875&partnerID=8YFLogxK
U2 - 10.21273/jashs.133.4.479
DO - 10.21273/jashs.133.4.479
M3 - Article
AN - SCOPUS:47749085875
SN - 0003-1062
VL - 133
SP - 479
EP - 486
JO - Journal of the American Society for Horticultural Science
JF - Journal of the American Society for Horticultural Science
IS - 4
ER -