Abstract
Wireless sensor networks (WSNs) are used to collect data and detect phenomena in a real-time environment. There is considerable interest in the deployment of WSNs in remote, inaccessible and inhospitable locations; such use of WSNs throws up many challenges. WSNs come with numerous advantages, yet a notable limitation is that the battery life dictates the lifetime of the sensor node. Two critical factors that determine battery lifetime are the frequency of sensor readings and the transmission range of the sensor nodes. Some energy-efficient routing protocols have been proposed and adopted for use to extend the lifetime of sensor nodes. These protocols aim at optimizing the routes in the network. Given that multi-hop routes are energy inefficient, improving the lifetime of WSNs in a multi-hop routing environment will require the use of route optimization techniques. A modified distance-based energy-aware (mDBEA) routing protocol is proposed which is efficient and capable of minimizing the energy consumption of the sensor nodes and hence, maximizing network lifetime. Our approach addresses the problem by calculating the Euclidian distance between successive nodes to determine the shortest distance that minimizes the energy required for transmission. The simulation results indicate that the mDBEA routing protocol reduced the amount of energy consumed in the network by choosing the minimum transmission distance between the source and its neighbour nodes that significantly prolonged the network's lifetime. Our greedy approach yielded about 95% Packet delivery ratio (PDR). Our next-hop and the direct-to-sink algorithms yielded about 82% PDR.
Original language | English |
---|---|
Pages (from-to) | 10195-10217 |
Number of pages | 23 |
Journal | Journal of Ambient Intelligence and Humanized Computing |
Volume | 14 |
Issue number | 8 |
DOIs | |
Publication status | Published - Aug 2023 |
Keywords
- Energy-aware
- Network lifetime
- Routing protocol
- Transmission range adjustment
- Wireless sensor networks